

DØ Measurement of The Dijet Azimuthal Decorrelations

Marek Zieliński
University of Rochester

Outline

- Motivation and the ΔΦ observable
- Experimental results
- Fixed-order PQCD description: LO and NLO
- Tuning Parton-Shower Monte Carlo's: Pythia and Herwig
- Testing ME-PS matching: Alpgen and Sherpa
- Conclusions

What is $\Delta\Phi$? Why is $\Delta\Phi$ of interest?

- ΔΦ is the azimuthal opening angle between the two leading jets
- ΔΦ distribution is sensitive to a wide spectrum of QCD radiation effects
 - \rightarrow Back-to-back production of two jets gives $\Delta\Phi = \pi$
 - \rightarrow Soft radiation: $\Delta \Phi \sim \pi$
 - \rightarrow Hard radiation: $\Delta \Phi < \pi$
 - \rightarrow At least 4 jet configurations for $\Delta \Phi < 2\pi/3$ (3-jet "Mercedes")

- Examine transition between soft and hard physics based on a single observable
- Testing ground for matching procedures that combine MC samples with different jet multiplicities

Experimental Aspects

 Observable: ΔΦ distribution between the two leading jets normalized by the integrated dijet cross section

$$Obs = \frac{1}{\sigma_{\text{dijet}}} \cdot \frac{d\sigma_{\text{dijet}}}{d\Delta\Phi}$$

- Advantages:
 - → ΔΦ is a simple variable, uses only the two leading jets
 - → No need to reconstruct or use the softer jets
 - → Jet direction is well measured
 - → Reduced sensitivity to jet energy scale and normalization
 - → Theoretical uncertainties also are reduced in the ratio

- Data sample:
 - → 150 pb⁻¹ integrated luminosity
 - → Jets reconstructed with cone algorithm R = 0.7
 - → Require that the two leading jets are central: |y| < 0.5</p>
 - → Second-leading p_T > 40 GeV
 - → Leading jet p_T bin thresholds:
 ❖ 75, 100, 130, 180 GeV
 - Quality requirements imposed on running conditions, vertex, jets, and missing ET
- Results published in PRL 94, 221801 (2005)

△Φ Results

- Data corrected for:
 - → Cut efficiencies
 - → Jet energy scale
 - → Resolution effects (unfolding)
- Dominant systematic uncertainty from jet energy effects
 - \rightarrow < 7% for $\Delta\Phi$ ~ π , up to 23% for $\Delta\Phi$ < $2\pi/3$
- Towards larger p_T , ΔΦ spectra more strongly peaked near π
 - → Increased correlation in ΔΦ
- Distributions extend into the "4 final-state parton regime", $\Delta \Phi < 2\pi/3$
- Data span 4 orders of magnitude across the $\Delta\Phi$ range
 - $\rightarrow \pi/2 < \Delta \Phi < \pi$ to avoid jet overlaps

Non-perturbative Effects

Hadronization correction:
Obs(hadron level)/Obs(parton level)

Underlying Event:
Obs(with UE)/Obs(without UE)

Non-perturbative effects are < 5% → only sensitive to perturbative aspects</p>

ΔΦ: Comparison to Fixed-Order PQCD

- Leading order (dashed blue curve)
 - clear limitations
 - \rightarrow Divergence at $\Delta \Phi = \pi$ (need soft processes)
 - No phase-space at $\Delta \Phi < 2\pi/3$ (only three partons)
- Next-to-leading order (red curve)
 - → NLOJET++: NLO for 3-jet production $(O(\alpha_s^4))$
 - Good description over the whole range, except in extreme ΔΦ regions

Quantitative Comparison: Data and NLO

- NLO PQCD
 - → Good overall description: on average 5-10% below data, except for $\Delta\Phi \sim \pi$ (where it needs resummation of soft processes)
- Renormalization and factorization scale dependence:

$$0.25p_{T}^{max} < \mu_{r,f} < p_{T}^{max}$$

- \rightarrow Small at intermediate $\Delta\Phi$
- \rightarrow Large at $\Delta\Phi \sim \pi$ (soft region)
- \rightarrow Large at $\Delta\Phi$ < $2\pi/3$ (tree-level region)
- PDF uncertainty estimated using CTEQ6.1M PDF set
 - → Larger in high p_T^{max} region

ΔΦ: Comparison to Parton-Shower MCs

- Testing the radiation process:
 - → 3rd and 4th jets from parton showers
- Herwig
 - Good overall description
- Pythia
 - → Default (dashed): very different shape
 - → Sensitivity to ISR
 - ♣ Bands: variation of PARP(67) = 1.0-4.0 PARP(67)*hard scale (~p_T) defines maximum virtuality in ISR shower -- directly related to max p_T in the shower
 - ❖ PARP(67) = 2.5 fits well
 - → Not sensitive to soft/FSR params
 - → ∆Φ data provides input to global tuning of Pythia parameters

More Pythia Tuning – Soft Params

- Description of the $\Delta\Phi \sim \pi$ region not ideal tried further tuning
 - \rightarrow $x_{u ISR}$, PARP(64) = 0.5-1.0
 - \rightarrow Primordial k_T , PARP(91) = 1.0-4.0 and upper cut-off PARP(93) = 4.0-8.0
 - \rightarrow p_{T max FSR}, PARP(71) = 4.0-8.0
 - → No sensitivity...

Beyond Pythia and Herwig

- Parton Shower MC's:
 - → Limited to 2→2 hard processes
 - → Resum soft radiation to all orders
 - → Difficult to produce high jet multiplicity events
- Matrix Element generators
 - → Exact for 2→N hard processes (at LO)
- PS-ME matching prescriptions combine strengths of both approaches
 - → Aim at good description of both soft and hard regions
 - → Avoid double counting of equivalent phase space configuration
 - → Alpgen and Sherpa widely used to study processes with multi-jet final states at Tevatron and LHC
- ullet $\Delta\Phi$ can test performance across a range of jet multiplicities

Comparisons to Alpgen

- Alpgen: tree-level production for 2→2, 3, ..., 6 jets
 - → Interfaced to both Pythia and Herwig for parton showers and hadronization
 - → Matching via MLM prescription (Mangano)
 - → Alpgen+Pythia and Alpgen+Herwig yield similar results
 - Details of parton shower model not important
 - \rightarrow Reasonable description of the $\Delta\Phi$ data

Comparisons to Sherpa

- Sherpa event generation:
 - → Tree-level production of up to 4-parton final states
 - Implementation of parton showering
 - → Matching via CKKW prescription (Catani, Krauss, Kuhn, Webber)
 - → Hadronization
- Good description of the ∆Ф data over the full range of our measurements

Summary

- The ΔΦ distribution has been measured for central jets in four p_T regions using 150 pb⁻¹ of DØ Run II data
 - → Sensitive to higher-order QCD processes
 - → Test of 3-jet NLO PQCD at Tevatron
 - ❖ Good agreement for most of ΔΦ range
 - → Helpful for tuning perturbative parameters in parton-shower MC's
 - Not sensitive to non-perturbative effects (hadronization, underlying event)
 - Herwig doing well, sensitivity to ISR in Pythia
 - → Test of ME-PS matching schemes for multi-jet configurations
 - Good description by Alpgen and Sherpa